Sasaki–weyl Connections on Cr Manifolds

نویسنده

  • LIANA DAVID
چکیده

We introduce and study the notion of Sasaki–Weyl manifold, which is a natural generalization of the notion of Sasaki manifold. We construct a reduction of Sasaki–Weyl manifolds and we show that it commutes with several reductions already existing in the literature.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Conformal mappings preserving the Einstein tensor of Weyl manifolds

In this paper, we obtain a necessary and sufficient condition for a conformal mapping between two Weyl manifolds to preserve Einstein tensor. Then we prove that some basic curvature tensors of $W_n$ are preserved by such a conformal mapping if and only if the covector field of the mapping is locally a gradient. Also, we obtained the relation between the scalar curvatures of the Weyl manifolds r...

متن کامل

Conformal connections on Lyra manifolds

We give an algebraic characterization of the case when conformal Weyl and conformal Lyra connections have the same curvature tensor. It is determined a (1,3)-tensor field invariant to certain transformation of semi-symmetric connections, compatible with Weyl structures on conformal manifolds. It is studied the case when this tensor is vanishing. M.S.C. 2000: 53B05, 53B20, 53B21.

متن کامل

Weyl Structures for Parabolic Geometries

Motivated by the rich geometry of conformal Riemannian manifolds and by the recent development of geometries modeled on homogeneous spaces G/P with G semisimple and P parabolic, Weyl structures and preferred connections are introduced in this general framework. In particular, we extend the notions of scales, closed and exact Weyl connections, and Rho–tensors, we characterize the classes of such...

متن کامل

Geometric connections and geometric Dirac operators on contact manifolds

We construct some natural metric connections on metric contact manifolds compatible with the contact structure and characterized by the Dirac operators they determine. In the case of CR manifolds these are invariants of a fixed pseudo-hermitian structure, and one of them coincides with the Tanaka–Webster connection.  2005 Elsevier B.V. All rights reserved. MSC: 53B05; 53C15; 53D10; 53D15

متن کامل

Symplectic Connections, Noncommutative Yang Mills Theory and Supermembranes

In built noncommutativity of supermembranes with central charges in eleven dimensions is disclosed. This result is used to construct an action for a noncommutative supermembrane where interesting topological terms appear. In order to do so, we first set up a global formulation for noncommutative Yang Mills theory over general symplectic manifolds. We make the above constructions following a pur...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005